The NGAL Test

For Early Assessment of AKI

Detected 2-3 days before creatinine rises¹

The NGAL Test is CE-Marked for IVD use and is currently available for Research Use Only in the United States.

Benefits

FAST

NGAL responds 2 hours after kidney injury,² 2-3 days before serum creatinine rises.¹

ADDITIVE

NGAL+ identifies subclinical AKI when an sCr- alone failed to identify 43% of AKI.³

PROGNOSTIC

Identifies patients at risk of developing moderate to severe AKI.⁴

CLINICALLY RELEVANT⁵

The NGAL biomarker was studied in over 16,500 patients in numerous settings including: post cardiac surgery, in critical illness and post kidney transplantation. In all three settings...

"NGAL significantly improved the prediction of AKI risk over the clinical model alone."⁵

bioporto.com | info@bioporto.com

© 2022 BioPorto Diagnostics A/S | Tuborg Havnevej 15, st. | DK-2900 Hellerup | (+45) 4529 0000

ADQI Recommendation

Integrate damage biomarkers to prevent and manage AKI⁶

Based on existing data and the practical experience of researchers and clinicians, ADQI suggests that "a combination of damage and functional biomarkers, along with clinical information, be used to improve the diagnostic accuracy of AKI, to recognize the different pathophysiological processes, to discriminate AKI etiology, and to assess AKI severity. This recommendation received a grade of B, conditional."⁶

CE Marked Intended Use

The NGAL Test is a particle-enhanced turbidimetric immunoassay for the quantitative determination of neutrophil gelatinase-associated lipocalin (NGAL) in human urine, EDTA plasma and heparin plasma on automated clinical chemistry analyzers. NGAL measurements are useful in the diagnosis of acute kidney injury which may lead to acute renal failure.

The NGAL Test is CE-Marked for IVD use and is currently available for Research Use Only in the United States.

Normal		INJURY	Damaged
ICTION	sCR UO NGAL ^{neg} Resolution (normal kidneys)	↑ sCR ↓ UO AKI stage 1A (Excretory dysfu tubular damage depletion, mild	NGAL ^{neg} reversible) unction without e, e.g. volume CHF, diuretics
Dysfunction FUN	sCR UO NGAL ^{pos} AKI stage 1S (subclinical) Tubular damage without excretory dysfunction, detectable prior to sCR elevation, which requires damage to more than 50% nephron mass	<pre></pre>	NGAL ^{pos} progression ciated AKI) a both and excretory

Adapted from: De Oliveira BD, Xu K, Shen TH et al. Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol 2019;15:599-612. **Green** = normal result, **Red** = abnormal result; sCR = serum creatinine, UO = urine output, NGAL = neutrophil gelatinase-associated lipocalin

KDIGO stage-based management of AKI 7						
AKI Stage						
High Risk	1	2	3			
Discontinue all	nephrotoxic age	ents when possi	ble			
Ensure volume status and perfusion pressure						
Consider functional hemodynamic monitoring						
Monitor serum creatinine and urine output						
Avoid hyperglycemia						
Consider alternatives to radiocontrast procedures						
	Non-invasive diagnostic workup					
	Consider invasive diagnostic workup					
	Check for changes in drug dosing					
		Consider Rer	nal Replacement Therapy			
		Consider ICU	Jadmission			
			Avoid subclavian catheters if possible			

REFERENCES: 1. Devarajan P. *Biomark Med*. 2010;4(2):265-280. | 2. Krawczeski CD, Goldstein SL, Woo JG, et al. *J Am Coll Cardiol*. 2011. | 3. Haase M, Devarajan P, Haase-Fielitz A, et al. *J Am Coll Cardiol*. 2011. | 4. Zappitelli M, Washburn KK, Arikan AA, et al. *Crit Care*. 2007. | 5. Haase-Fielitz A, Haase M, Devarajan P. *Ann Clin Biochem*. 2014. 6. Ostermann M, Zarbock A, Goldstein S, et al. Recommendations on Acute Kidney Injury Biomarkers From the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw Open. 2020. 7. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Kidney International, Suppl. 2021;2:1-138.

bioporto.com | info@bioporto.com

© 2022 BioPorto Diagnostics A/S | Tuborg Havnevej 15, st. | DK-2900 Hellerup | (+45) 4529 0000